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Introduction
During the solidification of a metal, on the scale of the process (~meters), three
distinct regions can be identified: a solid region, a mushy region and a liquid
region. Usually the mushy region consists of a dendritic crystal morphology
with a length scale, defined by the secondary arm spacing, on the order or
microns (see Figure 1).

Key solidification phenomena occur within the mushy region. Many of these
phenomena are associated with both the macro-scale of the process and the
micro-scale of the dendrite arm spaces. An important example is segregation of
the alloy components. Consider the solidification of a dilute binary alloy with a
partition ratio ko < 1. When the solid forms in the mushy region, the solute
phase is rejected into the liquid. At the micro-scale (i.e. the dendrite arm spaces),
this solute is redistributed in the solid and liquid phase by diffusion, a process
referred to as microsegregation. At the macroscopic scale of the casting, the
solute phase is redistributed by fluid flow (driven by thermal and solutal
natural convection), a process referred to as macrosegregation. If segregation
processes are to be modelled numerically, owing to the complex interaction of
the phenomena across a wide range of length scales, innovative computational
approaches are required.

In this paper, the computational issues involved in modelling segregation
phenomena are examined, with particular emphasis placed on methodologies
which can capture the disparate length scales of the problem. Towards this end,
a test problem involving the unidirectional solidification, from below, of an
aluminum copper alloy is investigated. Modelling this system involves the
coupling of a macroscopic model, describing the heat and mass transfer in the
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process as a whole, with a microscopic model that describes the mass transport
(microsegregation) in the secondary dendritic arm spaces. This modelling is
achieved on introducing a so called “bi-level” grid. A regular macro grid (finite
element or finite difference) on the scale of the process is used for the solution of
equations describing macroscopic heat and mass transport (the macroscopic
model). In the usual manner, values of variables at a macroscopic node are
representative of values in a specified control volume surrounding the node.
Further, each node point in the macro grid is also associated with a micro grid
on which equations describing the microscopic phenomena in the mushy region
are solved (the microscopic model). Values obtained with a microscopic model,
located at a given macro node point, are taken to be representative of the
microscopic behaviour in that node’s control volume. The result of using this bi-
level grid is a “dual-scale” segregation model that successfully couples the
macro and micro length scales into a single multi-scale treatment. The
macroscopic and microscopic models that make up the dual-scale model are
established in the literature[1,2] and preliminary findings using the dual-scale
model have also been reported[3-5]. The central contribution of the current
work focuses on the numerical issues associated with the computational
implementation of the dual-scale model.

A test problem
In order to provide a context for the development of a dual-scale segregation
model, a problem involving the unidirectional solidification of a dilute
aluminum-copper alloy from below is considered. This system has previously

Figure 1.
Length scales in an
alloy casting
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been investigated, both experimentally and numerically, by a number of
researchers, e.g.[1,6,7]. A schematic of the process is shown in Figure 1. A liquid
aluminum-copper alloy, temperature T > Tliq (the liquidus temperature) and
nominal solute copper concentration Co (wt.%), occupies the domain 0 ≤ x ≤ X.
At time t = 0, the alloy comes into contact with a cold mold, at x = 0,
convectively cooled such that its temperature is T < Teut (the eutectic
temperature). As time proceeds, the alloy will solidify and at any point in time t
> 0, owing to its multi-component nature, three regions will be identified: a fully
solid region; a fully liquid region; and a two-phase (solid and liquid) mushy
region with a dendritic crystalline morphology. As solid forms in the mushy
region, the copper solute is rejected into the liquid phase (ko < 1 in dilute
aluminum-copper alloys) and is subsequently redistributed by mass diffusion
at the micro-scale and advection on the scale of the process. It is noted that, since
copper is heavier than aluminum, the given system is both thermally and
solutally stable and the only fluid flows that give rise to advection are driven by
solidification shrinkage as the solid forms. These flows are directed towards the
chill face and, as a result, on final solidification a region of +ve segregation [C]
> Co is observed in the vicinity of the chill, see Figure 2; a phenomenon often
referred to as inverse segregation. The objective of the dual-scale model

Figure 2.
Schematic of the
positive inverse

segregation profile in
the vicinity of the chill
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developed in this work will be to predict the level of segregation in the inverse
segregation region.

The keys to establishing a dual-scale model that can “capture” both the
macro and micro-scale segregation phenomena rest in:

• the definition of suitable macroscopic variables in terms of microscopic
variables; and 

• the development of a numerical implementation that can bridge across
the scales.

Variables
Using a multi-phase volume averaging approach, pioneered in the context of
solidification systems by Beckermann and co-workers[8,9], appropriate
macroscopic variables are defined on choosing a representative elementary
volume (REV) in the mushy region, see Figure 1. The REV is chosen to be larger
than the typical microstructure length scale (the secondary arm spaces) but
smaller than the characteristic length scale of the process. A typical REV should
contain a number of primary dendrite arms and have a size on the order of 0.01-
0.001m (i.e. about the size of a typical numerical discretization element[8]). With
reference to an aluminum-copper alloy, the following assumptions are made for
the REV:

• equilibrium holds at the solid/liquid interface, i.e.

(1)

where C is the concentration, the subscripts 1 and s refer to the liquid and
solid phases respectively and the superscript * denotes values at the
solid/liquid interface;

• uniform liquid concentration, C1, in the liquid phase (the liquid mass
diffusion is four orders of magnitude larger than the solid mass
diffusion);

• uniform temperature, T = Ts = T1, throughout (the Lewis number for Al-
Cu alloys is around 200);

• uniform microstructure, for example see Figure 1a in Ni and
Beckermann[8].

These assumptions are reasonably valid for an aluminum-copper system and
are consistent with assumptions made in many studies.

On using the above assumptions, it is possible to define mixture variables
representative of the REV as a whole:

Mixture density (kg/m3):

(2)
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Mixture volumetric enthalpy (J/m3):

(3)

Mixture solute density (kg/m3):

(4)

Mixture concentration (wt.%):

(5)

where 0 ≤ gs ≤ 1 is the solid fraction of the REV. The variables C and ρ define
microscopic point quantities of concentration and density in the REV. In order
to evaluate the integrals in the above expressions, the distribution of the solute
in the solid is required; a distribution that is controlled by the microsegregation
process. Hence the definition of the macroscopic variables requires the
modelling of the micro-scale processes; a situation that motivates the
development of a dual-scale model.

The bi-level grid
In general, the role of a numerical discretization is to cover the domain of
interest with a grid of node points and assign variable values to the node points.
These values are then taken as representative of the variable values over a finite
volume that surrounds the node point. In the case of the dual-scale modelling of
segregation, the numerical discretization needs to be able to capture both the
macro scale (heat and mass transfer at the process scale) and micro-scales (mass
diffusion in the secondary arm spacings). This is achieved on introducing a bi-
level grid. In the first place the macroscopic scale of the process is covered by a
grid of node-centred control volumes (see Figure 3). As noted above, a typical
volume size in this macro grid will be on the order of the REV. Macro nodal grid
values, viz. temperature T, mixture density[ρ] , mixture enthalpy[ρH] and
mixture solute density[ρC] are representative values for the surrounding
control volume. Further, it is assumed that the microscopic state at the node
point is representative of the microscopic state in the surrounding control
volume. The microscopic state of the macro node is determined on solving for
the solid mass diffusion in the REV. This solution is carried out on a micro-scale
grid, centred on the macro node, nominally associated with a secondary arm
spacing in the REV (see Figure 3). The contention is that solution of the micro-
scale phenomena (segregation and arm coarsening) on this micro grid, under
the constraints of the macro nodal values, will be representative of the micro-
scale condition in the macro control volume (REV) as a whole. This contention
is partially supported on noting that previous predictions obtained with the
micro-scale model[2] to be used in this work are in close agreement with
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experimental measurements (see Table 6 in[2]). Since, by their nature, micro-
scale experimental measurements are volume averaged over an REV, it can be
concluded that the micro-scale model is indeed representative of the
surrounding REV.

The dual-scale model
Overview
In operation, at each point in time, the dual-scale model involves two major
steps:

(1) The modelling of the process scale with prediction of the macroscopic
variables. This modelling is carried out on the macro grid in Figure 3 and
employs an explicit time integration.

(2) The modelling of the micro phenomena. This modelling is carried out on
the micro grids in Figure 3, one micro grid associated with each macro
node. The time stepping is implicit and the calculations are constrained
by the macro-scale predictions from step 1.

The operation of the macro and micro-scale models are described in detail
below.

Macro-scale assumptions
On the scale of the process the key assumptions for the model are:

• The domain is one-dimensional and occupies the space 0 ≤ x ≤ Xb; where,
following Voller and Sundarraj[1], the Value Xb < X represents the extent

Figure 3.
The bi-level grid used in
the dual scale model
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of the macroporosity-free region, i.e. throughout the process it can be
assumed that there is always enough liquid in the region x > Xb to feed
the shrinkage.

• There is no mass flow across the line x = 0, i.e. no surface exudation.

• The specific heats, cs and c1, and thermal conductivities, Ks and K1, are
constant within each phase. 

• The latent heat of fusion L is constant.

• The solidus and liquidus lines in the phase diagram, Figure 4, are non-
linear functions of temperature, i.e.

(6)

• Using expressions derived by Ganesan and Poirier[10], the solid and
liquid densities, ρs and ρ1, are functions of the liquid solute

Figure 4.
A section of the phase

diagram for aluminum-
copper alloys
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concentration, C1. It is important to note that the solid density
relationship depends on the level of local (microscopic) mass diffusion in
the solid; in this work for low and moderate mass diffusion the density ρs

1

in Table I will be used, whereas for large mass diffusion the density ρs
2 in

Table I will be used.

• The solid is stationary, essentially a columnar dendritic structure or a
consolidated equiaxed structure.

• The liquid velocity u1 is uniform over the REV (i.e., dispersion terms are
neglected). 

• The formation of micro porosity in the region 0 ≤ x ≤ Xb is neglected.

Appropriate thermal data for the aluminum-copper alloy are given in Table I.
Note that the choice of convective cooling at the mold, hb, is made in order to
match the experimental conditions used by Kato and Cahoon[7].

Macro-scale governing equations
With the above assumptions, single domain equations describing the inverse
segregation process in the domain of the test problem 0 < x < Xb can be derived

Property Value Unit

Cps 900 J/kg-K
Cp1 1,100 J/kg-K
hamb 1,684.21 – 4.3443 t + 0.00449561 t2 W/m2-K
K1 100 W/m-K
Ks 200 W/m-K
L 3.95 × 105 J/kg
Tamb 293 K
Ti 1,020 K
Xb 0.1323 m
ρ1[10] 2,358.5 + 21.685 C1 + 7.2914 × 10–2 C1

2 – 7.2351 × 10–4 C1
3 kg/m3

ρs
1[10] 2,564.7 + 1.4023 Cl kg/m3

ρs2 [10] 2,558.1 + 2.1743 C1 + 0.060433 C1
2 kg/m3

ρs
eut 3,409 kg/m3

Ceut 33.2 wt%
Co 4.1 wt%
C1(T) 3,371.84 – 11.4464 T + 0.01333 T2 – 5.2955 × 10–6 T3 wt%
Cs(T) 47.1311 – 0.0505141 T wt%
D1 1.05 × 10–7 exp(–2,856/T) m2/s
Ds 0.29 × 10–4 exp(–15,610/T) m2/s
ko(T) Cs(T)/C1(T)
Teut 821.2 K
Tf 933.2 K
Tliq 921.73 K
∆Hf 1.07 × 109 J/m3

γ 0.093 J/m3

Table I.
Thermal properties of
A1-Cu alloy system
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on combing the two-phase volume-averaged equations presented by Ni and
Beckermann[8]. These macroscopic governing equations are[1]:

Heat transfer:

(7)

Solute transfer:

(8)

and mass continuity:

(9)

where 

(10)

is a mixture thermal conductivity
(11)

is the “system velocity” and

(12)

is an apparent specific heat. Appropriate boundary conditions for the above
macroscopic equations are: at x = 0:

(13)

where hamb is the heat transfer coefficient, Tamb is the ambient temperature of
the chill and F = ρ1u is the mass flow rate of liquid per unit area.

At x = Xb,

(14)

where Fb is the mass flow rate of the liquid metal per unit area that enters the
system to compensate for the shrinkage in 0 < x < Xb. Note that this mass flux
will result in a convective heat flux and solutal mass flux at x = Xb of the form 

(15)

and
(16)

Macro-scale discretization details
An explicit time integration of the above equations based on a node-centred
uniform grid of n control volumes[11] leads to the following set of discrete
equations:
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Heat transfer:

(17)

where

(18)

Solute transfer:

(19)

Mass continuity:

(20)

where the convective terms have been “upwinded” assuming that the flow is
towards the chill face. In the above equations,

(21)

(22)

is the mass flow rate of liquid per unit area, the superscript o represents old
values, the subscripts w and e represent the west and east faces of control
volume P, and the subscripts W and E denote the nodes to the west and east of
node P (see Figure 3). Further, values for the nodal temperature Tn+1 and nodal
liquid concentration (C1)n+1 are evaluated via linear extrapolation. The
apparent heat capacity CAPP, at a given node, is approximated in the following
manner:

(23)

where superscript oo refers to the values calculated two time steps behind the
current time step.

The solution approach
The numerical solution of the above equations consists of three basic steps:

(1) With the [ρH], T, C1 and F field values at the previous time step, the
current time step values of temperature T and mixture solute density
[ρC] are determined explicitly from equations (17) and (19).
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(2) A micro-scale treatment, carried out on the micro grids in Figure 3,
which determines the microsegregation in the solid phase of the REV, is
invoked. This treatment provides current time-step values for [ρ],[ρH]
and C1. 

(3) Finally, the current and previous values of the density fields, are used, in
equation (20), to determine the flow field to be used in the next time step.

Clearly a key step in the above algorithm is the micro-scale treatment. In
previous numerical models of segregation, the common approach is to arrive at
a micro-scale treatment on making limiting assumption about the nature of the
solute diffusion in the solid phase of the REV. The extreme cases of the lever
assumption, complete mass diffusion in the REV solid phase,and the Scheil
assumption, no mass diffusion in the REV solid, are often invoked as micro-
scale models. In the current study, however, a more precise treatment of micro-
scale segregation phenomena, involving finite solid mass diffusion and
microstructural evolution in the REV, will be used.

Micro-scale assumptions
The micro-scale treatment is based on a previously presented model of
microsegregation[2] in a dendritic binary alloy. Additional assumptions to those
already presented are:

• The microsegregation domain is one-dimensional and nominally
associated with a secondary dendrite arm spacing (see Figure 1).

• Owing to the coarsening process, the size of the microsegregation
domain X(t) increases with time (the model proposed by Roosz et al.[12]
will be used in this work).

• The moving solid/liquid interface, s(t), is planar and sharp.

• Mass transfer in the domain is controlled by diffusion alone.

• Primary and eutectic undercoolings are neglected.

The micro-scale equations
The microsegregation problem requires the separate solutions of a solid and
liquid mass diffusion equation in an expanding domain, 0 < x < X(t). On
defining a variable V, the “chemical activity”

(24)

and using the Landau transformation

(25)

the problem can be reduced to a single equation in a fixed domain 0 ≤ ξ ≥ 1, viz.,
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(26)

where

(27)

(28)

(29)

D is the mass diffusion coefficient[m2/s] and g1
L is the local liquid fraction at a

point in the micro domain. The boundary conditions for equation (26) are

(30)

and

(31)

The application of this last boundary condition requires the specification of a
mixture solute density history [ρC] and a coarsening history X(t); in addition,
calculation of other model parameters requires a cooling history for the domain
T(t). A successful model for the coarsening is that of Roosz et al.[12],

(32)

The coarsening parameter Mc is given by

(33)

where γ is the interfacial surface energy, ∆Hf is the volumetric latent heat of
fusion and m1 = (Tf – Teut)/Ceut is the representative liquidus slope (Tf is the
fusion temperature and Ceut is the eutectic concentration of the alloy);
appropriate data and units are given in Table I. In a general application of the
above microsegregation model, the mixture solute density[ρC](t) and cooling
T(t) histories are externally provided. In the current application, however, these
values will be provided by the explicit solution of the macro equations,
equations (17) and (19) above.

Micro-scale solution
On a micro grid in Figure 3, consisting of nn equally-spaced control volumes of
size ∆ξ, a fully time implicit central difference discretization of equation (26)
leads to the non-linear discrete equation

(34)
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with the coefficients defined as
(35)

(36)

(37)

(38)

Using a central difference replacement

(39)

where

(40)

At the node adjacent to the boundary ξ = 0

(41)

and at the node adjacent to the boundary ξ = 1

(42)

In solving equation (34), at a given time step ∆t, the following points are noted:

• Domain values of temperature T and mixture solid density [ρC] are
known, calculated by the explicit step in the macro model.

• There will be only one cell in the domain in which 0 < gP
L < 1. All the

other cells will be solid gP
L = 0 or liquid gP

L = 1.

• On convergence, the nodal V field will be such that, if the phase front is
located in control volume P, the nodal value VP will satisfy the
equilibrium condition

(43)

An iterative solution is employed. The seven key steps are:

(1) From the known domain temperature (the nodal temperature at the
associated macro node point), the current equilibrium concentration
value Vequ is calculated using the phase diagram relationship

(44)
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(2) The temperature- and concentration-dependent properties, e.g.
coarsening X(t), are then evaluated.

(3) At iteration m, the coefficients in equation (34) are set up according to the
most current liquid fraction field. At the phase change node, the unique
node where 0 < (gP

L)m < 1, the coefficient aP is set to a large value (e.g. BIG
= 1025) and the source term to S = BIG Vequ, thereby forcing the node to
take the required equilibrium value.

(4) With these coefficients, equation(34) is solved to determine the
concentration field, V.

(5) The local nodal liquid fraction field, g1 is then updated.

(6) Steps 3-5 are repeated until the concentration field, V, and liquid fraction
field g1 are consistent.

(7) The values required for the next explicit step on the macro grid are then
calculated as

(45)

(46)

(47)

where the nodal densities are calculated by the expressions in Table I on setting
nodal values of the liquid concentration C1I = VI/ko.

The major component in the solution algorithm is updating the nodal liquid
fraction field, i.e. step 5. This is achieved on selecting the nodal liquid fraction
field to ensure overall mass balance in the domain. If P is the phase change
node, then the overall mass balance is given by

(48)

where the superscript m+1 denotes the most current iterative value of gP
L and the

value of [ρC] is obtained from the macro-scale calculation. On rearrangement,
equation (48) can be used to obtain the value of gP

L at node P. In practice,
equation(48) is applied at every node with the correction

(49)
to account for the non-phase change nodes and nodes which have undergone
phase change in the time step.
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The dual-scale implementation
In summary, at a given time step, the four-step operation of the dual-scale model
is as follows:

(1) Current time-step values of the nodal T and [ρC] fields are obtained on
the explicit solution of equations (17) and (19).

(2) If, at any give node, the predicted temperature is in the range

(50)

the micro model outlined above is implemented and values of [ρ], [ρH]
and C1, required for the next time step, are calculated. Convergence of the
microscopic model takes between three and four iterations per call.

(3) If the macroscopic nodal temperature, predicted by equation (17), falls
below the eutectic temperature, Teut, the micro model is not called and a
standard explicit enthalpy treatment, which fixes TP = Teut until
solidification is complete, is employed to determine [ρH] directly from
equation (17).

(4) The calculation of the current flow field F terminates the calculations in
the time step.

The dual-scale model is used to determine the inverse segregation region in the
unidirectional solidification of the Al-4.1%Cu alloy shown in Figure 1;
appropriate data are given in Table I.

In the numerical implementation, a grid of 100 equally-spaced macro node
points is used. Each macro node point is associated with a micro grid of 100
equally-spaced nodes. A common time step of ∆t = 0.0085 seconds is employed,
a value that is restricted by the need to satisfy the stability requirement of the
macro model. Simulations are carried out until the first 20 nodes in the macro
domain have completed solidification (about three minutes of real time). The
computational requirement amounts to about 15 minutes of CPU on a Silicon
Graphics R4000 workstation.

Results
Validation
The mechanism of coupling between the micro and macro components in the
dual-scale model is validated by comparing the current model predictions with
the previous inverse segregation model presented by Voller and Sundarraj[1]; a
model which uses the extreme assumption of no solid state mass diffusion in the
REV solid (a Scheil assumption). For this comparison, in the dual-scale model, a
constant partition coefficient ko = 0.172 is used, a constant arm spacing of Xfixed
= 23 microns is assumed (i.e. no-coarsening) and the Scheil assumption is
modelled by setting Ds = 10–20. Under these conditions, the dual-scale model
predictions of the concentration profile [C](x), in the chill face region, are in very
close agreement with the results obtained with the single-scale macro model
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used by Voller and Sundarraj[1] (see Figure 5); results that are in reasonable
agreement with experiments, see Figure 10 in reference[1].

Micro-scale effects
Previous inverse segregation models[1,6,7] are single-scale models that use
limiting assumptions for dealing with the micro scale. Voller and Sundarraj[1]
assume, at the micro scale, zero mass diffusion in the solid and a fixed
microstructure. Diao and Tsai[6] also assume a fixed microstructure but make
the opposing assumption of complete diffusion in the REV solid (the lever
assumption). The major contribution of the dual-scale model outlined above is
that it allows for a more exact treatment of the micro scale; in particular the
effects of coarsening (non-constant microstructure) and finite solid state
diffusion (back diffusion) can be considered. Figure 6 shows the effects, on the
inverse segregation profile, of including a more comprehensive treatment of the
micro-scale effects. The solid line, in Figure 6, is the base-line comparison,
obtained on assuming constant microstructure and zero (very small) back
diffusion; the large dashed line is the segregation profile obtained when

Figure 5.
Validation of the dual
scale model
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coarsening is included; the intermediate dashed line is the segregation profile
predicted when the full dual-scale model is implemented using the data in Table
I; the small dashed line is the prediction when a larger back diffusion
(approaching a lever assumption) is included in the micro component of the
dual-scale model. On reference to the results in Figure 6, the effects of including
a micro-scale treatment are clearly evident. The driving mechanism in these
results is the amount of eutectic formed. The difference between the solid and
liquid eutectic densities is significant and, as a result, the more eutectic formed,
the greater the solidification shrinkage and the greater the flow back of solute-
enriched material towards the chill at x = 0. In the dual-scale model, the
introduction of both back diffusion and coarsening tends to reduce the amount
of eutectic formed at the micro scale[2], with the net result that the level of
macrosegregation in the chill-face region is reduced. The results in Figure 6 also
show the impact of the choice of density model on the inverse segregation
predictions. From the above arguments, one would expect that the level of
segregation with a large solid mass diffusion would under-predict all the others;
in fact, in the near chill region, the opposite behaviour is observed (see the short

Figure 6.
Effect of the micro scale

on macro inverse
segregation
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dashed curve in Figure 6). This is because, when a large (approaching complete)
diffusion is assumed, the appropriate density model for the solid phase, ρs

2 in
Table I leads to a larger solidification shrinkage in the early part of the
solidification and, as a result, an enhanced level of inverse segregation.

Conclusions
Segregation during the solidification of an alloy is a process that occurs across
a wide range of length scales. The central objective of this paper has been to
introduce the numerical mechanics required to build a comprehensive model
which can realistically account for the key macro- and micro-scale segregation
processes during the solidification of a binary alloy. The result has been the
introduction of a so called “dual-scale” model. The principal numerical feature
in this model is the use of a bi-level grid, in which each node point in the macro-
scale grid is associated with a micro-scale grid. A macro-scale transport model,
involving heat transfer and convection of solute, is implemented on the macro
grid. On each micro grid a micro-scale model, accounting for mass diffusion and
microstructure evolution, is implemented. In using this bi-level grid in the dual-
scale model, the underlying assumption is that results obtained on the micro
grid are representative of the micro-scale phenomena in the control volume
surrounding the associated macro control volume. This assumption, through
the volume-averaged definition of macro-scale variables, allows for the natural
coupling between the macro and micro scales.

The components of the dual-scale model are based on stand-alone single-
scale macrosegregation and microsegregation models that have been
previously developed and validated[1,2]. In this paper, the operation of the dual-
scale model has been validated on comparing its performance with a single-
scale macrosegregation model under the limiting assumptions of fixed
microstructure and zero solid diffusion. Further, the effectiveness of the dual-
scale model has been demonstrated on investigating the effects of micro-scale
phenomena on the prediction of inverse macrosegregation during the
unidirectional casting of a binary Al-Cu alloy. The predictions indicate that a
more exact accounting of the micro scale can effect the macro-scale predictions.

As noted in the introduction, the aim of this paper has been to outline the
basic numerical operation of the dual-scale model. With the model in place,
there are a number of interesting and worthwhile studies related to the
metallurgy that can be carried out. Preliminary studies can be found in the
thesis by Sundarraj[3] and recent papers by Sundarraj and Voller[4,5].
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